The Use of Artificial Neural Network (ANN) for Modelling, Simulation and Prediction of Advanced Oxidation Process Performance in Recalcitrant Wastewater Treatment
نویسندگان
چکیده
Treatment of recalcitrant wastewater by advanced oxidation processes (AOPs) is influenced by several factors. Due to complexity of the processes, they are difficult to be modelled and simulated using conventional mathematical modelling. Artificial neural network is used in many areas of science and engineering as a promising tool because of its simplicity in simulation, prediction and modelling of process performance (Prakash et al., 2008). The chapter presents artificial neural network and training of artificial neural network, advanced oxidation processes (AOPs), case studies, conclusions and references.
منابع مشابه
Dynamic Performance Analysis and Simulation of a Full Scale Activated Sludge System Treating an Industrial Wastewater Using Artificial Neural Network
Due to changeable nature of the industrial wastewaters, proper operation of an industrial wastewater treatment plant is of prior importance in order to keep the process stability at the desired conditions. In this mean, simulation of the treatment system behavior using artificial neural network (ANN) can be an effective tool. This paper evaluates long term performance and process stability of ...
متن کاملPrediction of forging force and barreling behavior in isothermal hot forging of AlCuMgPb aluminum alloy using artificial neural network
In the present investigation, an artificial neural network (ANN) model is developed to predict the isothermal hot forging behavior of AlCuMgPb aluminum alloy. The inputs of the ANN are deformation temperature, frictional factor, ram velocity and displacement whereas the forging force, barreling parameter and final shape are considered as the output variable. The developed feed-forward back-prop...
متن کاملModeling and Experimental Prediction of Wastewater Treatment Efficiency in Oil Refineries Using Activated Sludge Process
In this study, activated sludge process for wastewater treatment in a refinery was investigated. For such purpose, a laboratory scale rig was built. The effect of several parameters such as temperature, residence time, effect of Leca (filling-in percentage of the reactor by Leca) and UV radiation on COD removal efficiency were experimentally examined. Maximum COD removal efficiency was obtained...
متن کاملPrediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt
In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...
متن کاملEvaluation of the Effective Electrospinning Parameters Controlling Kefiran Nanofibers Diameter Using Modelling Artificial Neural Networks
Objective(s): This paper investigates the validity of Artificial Neural Networks (ANN) model in the prediction of electrospun kefiran nanofibers diameter using 4 effective parameters involved in electrospinning process. Polymer concentration, applied voltage, flow rate and nozzle to collector distance were used as variable parameters to design various sets of electrospinning ex...
متن کامل